### **Related Questions with Solutions**

#### Questions

### Quetion: 01

Which one of the following is an infinite set?

- A. The set of human beings on the earth
- B. The set of water drops in a glass of water
- C. The set of trees in a forest
- D. The set of all primes

## **Quetion: 02**

Consider the following statements 1.  $\phi \in \{\phi\}$ 

2.  $\{\phi\} \subseteq \phi$ 

Which of the statements given above is/are correct?

- A. 1 only B. 2 only C. Both 1 and 2
- D. Neither 1 nor 2

### **Quetion: 03**

If n(A) = 4, then find number of subsets of P(A).

A. 2<sup>4</sup>

в. 2<sup>8</sup>

C. 2<sup>16</sup>

D. 2<sup>32</sup>

#### D. 2<sup>52</sup>

### **Quetion: 04**

What does the shaded region represent in the figure given below ?



A.  $(P \cup Q) - (P \cap Q)$ B.  $P \cap (Q \cap R)$ C.  $(P \cap Q) \cap (P \cap R)$ D.  $(P \cap Q) \cup (P \cap R)$ 

### **Quetion: 05**

The set  $A = \{x : x \in R, x^2 = 16 \text{ and } 2x = 6\}$  is A. Null set.

B. Singleton set C. Infinite set

D. not a well defined collection

#### **Quetion: 06**

If A =  $\{2, 8\}$  and B =  $\{3, 4, 5\}$ , find number of elements in A × B and B × A. A. 12, 12 B. 6, 12 C. 12, 6

### D. 6, 6

## **Quetion: 07**

If  $A = \{2, 3, 4, 8, 10\}, B = \{3, 4, 5, 10, 12\}, C = \{4, 5, 6, 12, 14\}$  then  $(A \cap B) \cup (A \cap C)$  is equal to A.  $\{3, 4, 10\}$  B.  $\{2, 8, 10\}$  C.  $\{4, 5, 6\}$ 

D. {3, 5, 14}

# **Quetion: 08**

If n(A) denotes the number of elements in set A and if n(A) = 4, n(B) = 5 and  $n(A \cap B) = 3$ , then  $n[(A \times B) \cap (B \times A)] = 0$ 

#### Solutions

#### Solution: 01

In the given sets, the set of all primes is an infinite set.

## Solution: 02

Both statements are incorrect.

### Solution: 03

$$n(A) = 4 \Rightarrow n(P(A)) = 2^4 = 16$$

Hence number of subsets of  $P(A) = 2^{16}$ 

### Solution: 04

The shaded region represents  $(P \cap Q) \cup (P \cap R)$ . Let the intersecting sets P, Q, R divide it into 7 regions marked, a to g as shown below.



The shaded part contains regions b, c, and d. (a)  $(P \cup Q) - (P \cap Q) \equiv regions \ a, b, c, d, f, g, -(b, c)$   $\equiv a, d, f, g, \cdot not \ correct.$ (b)  $(P \cap (Q \cap R) \equiv a, b, c, d, \cap c, f \equiv c \text{ not correct.}$ (c)  $(P \cap Q) \cap (P \cap R) \equiv regions \ b, c, \cap region, c, d \equiv c, so$ not correct. (c)  $(P \cap Q) \cap (P \cap R) \equiv regions \ b, c, \cap region, c, d \equiv c, so$ 

 $\begin{array}{l} not \; correct \\ [d] \left( P \cap Q \right) \cup \left( P \cap R \right) \equiv \text{regions } b, c, \cup c, d \equiv b, c, d \text{ so correct.} \end{array}$ 

#### Solution: 05

 $\overline{A} = \{x : x \in \overline{R}, x^2 = 16 \text{ and } 2x = 6\}$   $x = 3 \text{ and } x = \pm 4$ hence null set (no common terms)

## Solution: 06

 $\begin{array}{l} A = \{2,8\}, B = \{3,4,5\} \\ A \times B = \{(2,3),(2,4),(2,5),(8,3),(8,4),(8,5)\} \text{ clearly } A \times B \neq B \times A \\ B \times A = \{(3,2),(3,8),(4,2),(4,8),(5,2),(5,8)\} \\ \text{ although } n(A \times B) = n(B \times A) \end{array}$ 

## Solution: 07

 $\overline{A \cap B} = \{3, 4, 10\} \quad A \cap C = \{4\}$  $(A \cap B) \cup (A \cap C) = \{3, 4, 10\}$ 

Solution: 08

**Correct Options** 

Answer:01 **Correct Options: D** Answer:02 **Correct Options: D** Answer:03 **Correct Options: C** Answer:04 **Correct Options: D** Answer:05 **Correct Options: A** Answer:06 **Correct Options: D** Answer:07 **Correct Options: A** Answer:08 **Correct Answer: 9**